MISSISSIPPI ASSESSMENT PROGRAM (MAP)
MATHEMATICS
PRACTICE TESTLET
GRADE 7
(REVISED MARCH 2016)

Carey M. Wright, Ed.D., State Superintendent of Education

March 2016
A Joint Publication

Division of Research and Development, Office of Student Assessment

- Walt Drane, Director of Operations and Test Security
- Marion Jones, Director of Support Services
- Richard Baliko, NAEP State Coordinator
- Sharon Prestridge, Special Populations Coordinator
- Vincent Segalini, MAP Program Coordinator
- Kimberly Jones, SATP2 Coordinator

Office of the Chief Academic Officer

- Dr. Kim Benton, Chief Academic Officer
- Trecina Green, Executive Director, Office of Professional Development
- Jean Massey, Executive Director, Office of Secondary Education
- Dr. Nathan Oakley, Executive Director, Office of Elementary Education and Reading
- Dr. Marla Davis, Bureau Director, Office of Secondary Education
- Dr. Shelita Brown, Secondary Mathematics Specialist, Office of Secondary Education
- Carol Ladner, Mathematics Professional Development Coordinator
- Elizabeth Fulmer, Mathematics Professional Development Coordinator

The Mississippi State Board of Education, the Mississippi Department of Education, the Mississippi School for the Arts, the Mississippi School for the Blind, the Mississippi School for the Deaf, and the Mississippi School for Mathematics and Science do not discriminate on the basis of race, sex, color, religion, national origin, age, or disability in the provision of educational programs and services or employment opportunities and benefits. The following office has been designated to handle inquiries and complaints regarding the non-discrimination policies of the above-mentioned entities:

Director, Office of Human Resources
Mississippi Department of Education
359 North West Street
Suite 203
Jackson, Mississippi 39201
(601) 359-3511
Introduction

Purpose

The practice testlet is designed to provide students with an authentic opportunity to practice items that are aligned to the Mississippi College-and Career-Readiness Standards (MS CCRS) and that mirror those that may appear on the mathematics MAP assessment. The testlet is also intended to provide teachers with data to drive classroom instruction and provide direct feedback to students. It is NOT intended to predict student performance on the operational MAP assessment.

Structure

The mathematics testlet contains various item types that will be administered on the MAP assessment, such as standard multiple choice, matching, multiple select, and fill in the blank. At the end of the testlet are a series of performance task items, which will assess the performance task standards found in the mathematics MAP blueprint.

Directions

1. Allow students to complete each item type and performance task in the testlet.
2. Teachers will review student responses to the items and score the items and the performance task using the scoring key.
3. Teachers should review the results to determine the needed instructional approach.
4. Teachers can utilize the testlets as teaching tools to help students gain a deeper understanding of the MS CCRS.
5. At the bottom left of each page is an item tag, which will contain the item number, grade level, suggested DOK level, and the standard aligned to the item.
1. A group of friends traveled at a constant rate. They traveled $\frac{2}{5}$ of a mile in $\frac{1}{4}$ of an hour.

Which of the following statements are true about this unit rate? Select all that apply.

A. Divide $\frac{2}{5}$ by $\frac{1}{4}$ to find the unit rate per hour.

B. The average speed will be less than 1 mile per hour because the group travels less than a fourth of a mile in $\frac{1}{4}$ of an hour.

C. The group traveled at an average speed of $1\frac{3}{5}$ miles per hour.

D. The average speed will be greater than 1 mile per hour because the group travels more than a fourth of a mile in $\frac{1}{4}$ of an hour.

E. The group traveled at an average speed of $2\frac{1}{4}$ of a miles per hour.
2. Robert’s class built three solar-powered racecar, A, B, and C. The class raced each car in the parking lot of the school. The line segments shown on the graph below display the distance d, in meters, that each racecar traveled after t seconds.

Which of the following statements about the graph are true? Select all that apply.

A. The point (1, 5) tells that racecar A traveled 1 meter in 5 seconds.
B. The point (6, 9) tells that racecar B traveled 9 meters in 6 seconds.
C. The point (5, 2) tells that racecar C traveled 5 meters in 2 seconds.
D. The relationship between the time and distance is a proportional relationship.
E. The relationship between the time and distance is not a proportional relationship.
3. The distance a train travels, \(d \), is proportional to a constant rate of speed, \(r \), at different times, \(t \). Which equation shows the relationship between the speed of the train and the distance traveled?

A. \(r = dt \)

B. \(r = d + t \)

C. \(r = d - t \)

D. \(r = \frac{d}{t} \)
4. Sal ate dinner at his favorite restaurant. Sal knows that the amount of the bill before tax will be $52.60 and that the sales tax rate is 8%. Sal decides to leave a 20% tip for the waiter based on the pre-tax amount. Use this information to answer Part A and Part B below.

Part A
How much will Sal leave for a tip?

Part B
What is the total bill for Sal’s dinner including the tax and tip?
5. Directions: Determine whether each statement is True or False. Select the correct cell in each row.

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>The sum of -9 and (\frac{18}{2}) is equal to 0.</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>The sum of (\frac{-14}{2}) and 7 is greater than 0.</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>The sum of 6, -4, and -2 is equal to 0.</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>The sum of 7, -9, and 2 is less than 0.</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
6. Tami multiplies two fractions. The first fraction is greater than -1 but less than 0. The second fraction is greater than 0 but less than 1.

Which statement describes the product of the two fractions Tami multiplied?

A. The product is less than -1.
B. The product is greater than 1.
C. The product is greater than 0 and less than 1.
D. The product is greater than -1 and less than 0.
7. During an archaeological dig, the team starts at an elevation of \(-5 \frac{1}{2}\) feet. At a rate of \(2 \frac{3}{4}\) feet per hour, the team digs deeper into the surface for \(3 \frac{1}{2}\) hours. For the next \(4 \frac{1}{2}\) hours, the team digs at a rate of \(1 \frac{3}{12}\) feet per hour.

Directions: Use the information above to answer Part A and Part B.

Part A

How many feet did the archeological team dig after \(3 \frac{1}{2}\) hours?

\[\text{feet}\]

Part B

What was the team’s elevation at the end of the day?

\[\text{feet}\]
8. Which expression below is equivalent to the expression $18a + 12b + 9a + 24b$?

A. $63ab$
B. $30ab + 33ab$
C. $27a + 36b$
D. $21a + 42b$
9. Directions: Determine whether each expression in the table is equivalent to the expression shown below. Select the correct cell in each row.

\[-6x + 4(-2x + 8y) - 2y + 4\]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-6x - 8x + 32y - 2y + 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2x - 30y + 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(-14x + 34y + 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(-14x + 30y + 4)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

09-GR7-LV2-7.EE.1
10. On Mondays, a coffee shop offers its customers a 25% discount on all coffee purchases. The coffee shop usually charges c dollars for a flavored coffee. The expression below can be used to determine the cost of a flavored coffee on Mondays.

\[c - 0.25c \]

Which expression could also be used to determine the cost of a flavored coffee on Mondays?

A. $0.25c$
B. $0.75c$
C. $1.25c$
D. $1.75c$
11. An amusement park ticket normally sells for $32.50. An employee receives 20% off the price of a ticket.

Which statement correctly describes how to find the employee’s discounted ticket price?

A. Convert 20% to a decimal value, and then multiply the normal ticket price by the decimal value calculated.

B. Subtract 20% from 100%, convert the difference to a decimal value, and then multiply the normal ticket price by the decimal value calculated.

C. Add 20% to 100%, convert the sum to a decimal value, and then multiply the normal ticket price by a decimal value.

D. Convert 20% to a decimal value, and then subtract the decimal value from the normal ticket price.
12. Abram rode in a cab for 9 miles. The taxi driver charged $2.50 for the first \(\frac{1}{2} \) mile and $1.25 for each additional \(\frac{1}{2} \) mile.

How much did Abram pay for the cab ride in all?

A. $2.50
B. $22.50
C. $23.75
D. $32.81
13. Each game at an arcade costs $1.50. Chuck spent no more than $12.50 at the arcade. He bought a snack for $5.25 and spent the rest of his money on arcade games.

Directions: Use the information above to respond to Part A and Part B.

Part A
What is the maximum number of games Chuck could have played?

Part B
Based on your response to Part A, which number line below best represents the possible number of arcade games that Chuck could have played?

A.
B.
C.
D.

13-GR7-LV2-7.EE.4b
14. A scale drawing of a rectangular park is shown below.

![Scale diagram](image)

scale: 1 cm = 25 m

Which statement explains how to find the actual dimensions of the park in meters?

A. Add 25 to each dimension of the rectangle in the scale drawing.
B. Multiply each dimension of the rectangle in the scale drawing by 1.
C. Multiply each dimension of the rectangle in the scale drawing by 25.
D. Add 25 to the product of the dimensions of the rectangle in the scale drawing.
15. Directions: Respond to Part A and Part B below based on your understanding of triangles.

Part A
Which sets of measurements could be the interior angle measurements of a triangle? Select all that apply.

A. 10°, 10°, 160°
B. 15°, 75°, 90°
C. 20°, 80°, 100°
D. 35°, 35°, 105°
E. 60°, 60°, 60°

Part B
Which sets of measurements could be the side lengths of a triangle? Select all that apply.

A. 3 cm, 3 cm, 3 cm
B. 4 cm, 8 cm, 13 cm
C. 5 cm, 9 cm, 14 cm
D. 6 cm, 7 cm, 8 cm
E. 7 cm, 7 cm, 10 cm
16. Jamal will slice a cylinder into two congruent pieces. Which two-dimensional plane sections could result from the slice Jamal will make? Select all that apply.

A. Circle
B. Pentagon
C. Hexagon
D. Triangle
E. Rectangle
17. The mean radius of Earth is 6,371.0 kilometers and the mean radius of Earth’s Moon is 1,737.5 kilometers. What is the approximate difference in the mean circumferences of Earth and Earth’s Moon? Round your answer to the nearest tenth of a kilometer.

Note: Use 3.14 for π.

A. 40,009.9 kilometers
B. 29,098.4 kilometers
C. 14,556.6 kilometers
D. 10,911.5 kilometers
18. The measure of \(\angle ABC \) is 50°.

Directions: Use the information above to answer Part A.

Part A
If \(\angle ABC \) and \(\angle DEF \) are complementary, what is the measurement of \(\angle DEF \)?

Part B
Directions: Use your response in Part A to answer Part B.

If \(\angle DEF \) and \(\angle XYZ \) are supplementary, what is the measurement of \(\angle XYZ \)?
19. A solid figure is shown below.

What is the volume, in cubic inches, of the solid figure?

A. 6,156 cubic inches
B. 8,100 cubic inches
C. 3,888 cubic inches
D. 2,268 cubic inches
20. Laura wants to determine if the 7th grade class wants to go on a field trip to an art museum, a concert, or a sporting event.

Which sampling method would likely provide a representative sample of the population?

A. Survey every fifth 7th grade student as Laura arrives at school because it gives each seventh-grade student an equal opportunity to be a part of the survey.

B. Survey every fifth student as Laura arrives at school because it gives each student in her school an equal opportunity to be a part of the survey.

C. Survey every member of the art club because they would likely know why it would be more fun to visit an art museum.

D. Survey all the 7th grade athletes because they would likely know why it is more fun to go to the sporting event.
21. Approximately 1,500 students attend Jones Middle School. Below is the data collected from two random samples of 100 students regarding school lunch preference.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Hamburgers</th>
<th>Tacos</th>
<th>Pizza</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>12</td>
<td>14</td>
<td>74</td>
<td>100</td>
</tr>
<tr>
<td>#2</td>
<td>12</td>
<td>11</td>
<td>77</td>
<td>100</td>
</tr>
</tbody>
</table>

Which of the following inferences can be made based on the data collected? Select all that apply.

A. Most students prefer pizza.
B. 74% of the students indicated they prefer hamburgers and tacos combined.
C. More students prefer pizza than hamburgers and tacos combined.
D. Exactly 200 students prefer hamburgers and pizza.
E. Exactly half of the students surveyed prefer pizza.
22. The table below shows the number of minutes Larry and Tom trained for a cross-country run daily.

Larry’s Training Times (min)

Tom’s Training Times (min)

Which statement correctly compares the distribution of their training times?

A. Larry’s average training time is greater than Tom’s average training time.
B. Larry’s median training time is equal to Tom’s median training time.
C. There is less variability in Larry’s training times than in Tom’s training times.
D. There is more variability in Larry’s training times than Tom’s training times.

22-GR7-LV1-7.SP.3
23. Lisa recorded the number of miles that each of her parents drove each day last week. Her results are shown in the table below.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisa’s Mother</td>
<td>24</td>
<td>52</td>
<td>40</td>
<td>36</td>
<td>52</td>
<td>44</td>
<td>32</td>
</tr>
<tr>
<td>Lisa’s Father</td>
<td>6</td>
<td>50</td>
<td>48</td>
<td>44</td>
<td>48</td>
<td>62</td>
<td>10</td>
</tr>
</tbody>
</table>

Which of the following statements about the data Lisa collected are true? Select all that apply.

A. The range of miles driven by Lisa’s father was greater than the range of miles driven by Lisa’s mother.

B. The average number of miles driven by Lisa’s father was greater than the average number of miles driven by Lisa’s mother.

C. The median number of miles driven by Lisa’s father was greater than the median number of miles driven by Lisa’s mother.

D. The median number of miles driven by Lisa’s father was equal to the median number of miles driven by Lisa’s mother.

E. The average number of miles that Lisa’s mother drove on Saturday and Sunday was less than the average number of miles that Lisa’s father drove on Friday, Saturday, and Sunday.
24. Directions: Examine each probability below. Determine whether the probability represents a chance event that is likely to occur, neither likely nor unlikely to occur, or unlikely to occur. Select the correct cell in each row.

<table>
<thead>
<tr>
<th>Probability</th>
<th>Likely to Occur</th>
<th>Neither Likely nor Unlikely to Occur</th>
<th>Unlikely to Occur</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{7}{8})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{4}{8})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{3}{10})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{17}{34})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
25. If a cube numbered 1 to 6 is tossed 300 times, about how many times would you predict the cube to land on a number greater than 4?

A. 50
B. 100
C. 150
D. 200
26. There are 12 boys and 12 girls in Ms. Mooney’s homeroom class. Ms. Mooney will randomly pick 1 student to take attendance today.

Which statement explains how to find the probability that Sara, a student from Ms. Mooney’s homeroom class, will be the student picked?

A. The denominator is the number of girls and the numerator is represented by Sara because she is the only girl being considered.

B. The denominator is the total number of students and the numerator is the number of girls in the class because all of the girls are being considered.

C. The denominator is the total number of students and the numerator is represented by Sara because she is the only student being considered.

D. The denominator is the number of girls and the numerator is the number of boys because it is less likely that a boy will be picked.
27. Directions: Respond to Part A and Part B based on your understanding of probability of events.

Part A

A game at the state fair has 4 colors on a wheel, as seen in the diagram. Each section of the wheel is the same size.

Holly wants to design a computer simulation to study how many spins it takes to land on each color once. Using the digits 0 through 9, she will assign a digit to each section of the wheel. Which option below best describes how the digits could be assigned?

A. Assign the digit 0 to blue, 1 to yellow, 2 to red, and 3 to green.

B. Assign the digit 4 to blue, 3 to yellow, 2 to red, and 1 to green.

C. Assign the digits 0, 1, and 2 to blue; 3, 4, and 5 to yellow; 6, 7, and 8 to red; and 9 to green.

D. Assign the digits 0, 1, 2, and 3 to blue; 4, 5, and 6 to yellow; 7 and 8 to red; and 9 to green.

27a-GR7-LV2-7.SP.8c
Part B
Holly designs a computer simulation with 25 trials and uses the data from the simulation to create a graph. The graph shown below displays the relative frequency of the number of spins in her simulation to land on each color once.

![Holly’s Simulation Results](image)

Holly’s Simulation Results

Number of Spins Needed to Land on Each Color Once

Use the graph to determine what is the probability that a player lands on each color once in less than 7 spins?

```

```
Grade 7 Performance Task:

Directions: Use the information below to answer items 28-34.

Kate participated in a walk-a-thon to raise money for her local animal shelter. She recorded the total distance she walked at several different points in time; unfortunately, a few of the entries got smudged and Kate can no longer read them. The times and distances that can still be read are listed in the table below.

28. Directions: Assuming Kate walked at a constant speed, complete the table below.

<table>
<thead>
<tr>
<th>Time in Hours ((h))</th>
<th>Distance Walked in Miles ((d))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.4</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
29. Use the table in Item 28 to plot Kate’s progress on the coordinate plane below. Label the x-axis “Time in Hours (h)”. Label the y-axis “Distance Walked in Miles (d)”.

29-GR7-LV2-7.RP.2d
30. What was Kate’s walking rate in miles per hour?

31. How much time does it take Kate to walk one mile?

32. What coordinate point, on the graph, describes Kate’s walking rate, in miles per hour?

30-GR7-LV2-7.RP.2b
31-GR7-LV2-7.RP.2b
32-GR7-LV2-7.RP.2d
33. What coordinate point, on the graph, represents the number of miles Kate walked at 5 hours?

34. Next year Kate is planning to walk for seven hours. If she walks at the same speed next year, how many miles can we expect her to walk?

miles
Grade 7 Answer Key

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Answer</th>
<th>Point Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.RP.1</td>
<td>A, C, D</td>
<td>1 pt</td>
</tr>
<tr>
<td>2</td>
<td>7.RP.2d</td>
<td>B, D</td>
<td>1 pt</td>
</tr>
<tr>
<td>3</td>
<td>7.RP.2c</td>
<td>D</td>
<td>1 pt</td>
</tr>
<tr>
<td>4</td>
<td>7.RP.3</td>
<td>Part A: $10.52
Part B: $67.33</td>
<td>2 pts</td>
</tr>
<tr>
<td>5</td>
<td>7.NS.1a</td>
<td>A1, B2, C1, D2</td>
<td>2 pts</td>
</tr>
<tr>
<td>6</td>
<td>7.NS.2b</td>
<td>D</td>
<td>1 pt</td>
</tr>
<tr>
<td>7</td>
<td>7.NS.3</td>
<td>Part A: 9.625 or 9 7/8
Part B: -20.75 or -20 3/4</td>
<td>2 pts</td>
</tr>
<tr>
<td>8</td>
<td>7.EE.1</td>
<td>C</td>
<td>1 pt</td>
</tr>
<tr>
<td>9</td>
<td>7.EE.1</td>
<td>A1, B2, C2, D1</td>
<td>2 pts</td>
</tr>
<tr>
<td>10</td>
<td>7.EE.2</td>
<td>B</td>
<td>1 pt</td>
</tr>
<tr>
<td>11</td>
<td>7.EE.3</td>
<td>B</td>
<td>1 pt</td>
</tr>
<tr>
<td>12</td>
<td>7.EE.3</td>
<td>C</td>
<td>1 pt</td>
</tr>
<tr>
<td>13</td>
<td>7.EE.4b</td>
<td>Part A: 4
Part B: A
The graph includes closed circles on all possible integer values with no connecting solid or dashed line(s) between: 0, 1, 2, 3, and 4 (Chuck cannot play a fraction of a game, nor can he play a negative number of games)</td>
<td>2 pts</td>
</tr>
<tr>
<td>14</td>
<td>7.G.1</td>
<td>C</td>
<td>1 pt</td>
</tr>
<tr>
<td>16</td>
<td>7.G.3</td>
<td>A, E</td>
<td>1 pt</td>
</tr>
<tr>
<td>17</td>
<td>7.G.4</td>
<td>B</td>
<td>1 pt</td>
</tr>
<tr>
<td>18</td>
<td>7.G.5</td>
<td>Part A: 40°
Part B: 140°</td>
<td>2 pts</td>
</tr>
<tr>
<td>19</td>
<td>7.G.6</td>
<td>B</td>
<td>1 pt</td>
</tr>
<tr>
<td>20</td>
<td>7.SP.1</td>
<td>A</td>
<td>1 pt</td>
</tr>
<tr>
<td>21</td>
<td>7.SP.2</td>
<td>A, C</td>
<td>1 pt</td>
</tr>
<tr>
<td>22</td>
<td>7.SP.3</td>
<td>D</td>
<td>1 pt</td>
</tr>
<tr>
<td>23</td>
<td>7.SP.4</td>
<td>A, C</td>
<td>1 pt</td>
</tr>
<tr>
<td>24</td>
<td>7.SP.5</td>
<td>A1, B2, C3, D2</td>
<td>2 pts</td>
</tr>
<tr>
<td>25</td>
<td>7.SP.6</td>
<td>B</td>
<td>1 pt</td>
</tr>
<tr>
<td>26</td>
<td>7.SP.7a</td>
<td>C</td>
<td>1 pt</td>
</tr>
<tr>
<td>27</td>
<td>7.SP.8c</td>
<td>Part A: D
Part B: 0.36</td>
<td>2 pts</td>
</tr>
<tr>
<td>28</td>
<td>7.RP.2b</td>
<td>1<sup>st</sup> Column: 2.5
2<sup>nd</sup> Column: 3.2; 16</td>
<td>1 pt</td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Answer</td>
<td>Point Value</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>29</td>
<td>7.RP.2d</td>
<td>Student’s should graph a straight line passing through the points (1,3.2); (2,6.4); (2.5,8); and (5,16)</td>
<td>1 pt</td>
</tr>
<tr>
<td>30</td>
<td>7.RP.2b</td>
<td>3.2 miles per hour (mph)</td>
<td>1 pt</td>
</tr>
<tr>
<td>31</td>
<td>7.RP.2b</td>
<td>0.3125 hour or approximately 19 minutes</td>
<td>1 pt</td>
</tr>
<tr>
<td>32</td>
<td>7.RP.2d</td>
<td>(1,3.2)</td>
<td>1 pt</td>
</tr>
<tr>
<td>33</td>
<td>7.RP.2d</td>
<td>(5,16)</td>
<td>1 pt</td>
</tr>
<tr>
<td>34</td>
<td>7.RP.2b</td>
<td>22.4</td>
<td>1 pt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Points</td>
<td>43 pts</td>
</tr>
</tbody>
</table>

Scoring Rules

Step #1: Use the answer key to view the maximum point value for each item.

Step #2: Add the total number of points the student has earned, and divide by the total number of points possible.

Step #3: Determine if the student has earned at least 80% of the total points.